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Lecture 9
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Partial likelihood

From previous statistics courses you have learned about likelihood
methods. You have used these for parametric models. However, because
the Cox Model is semi-parametric, we cannot immediately apply likelihood
methods for estimation. David Cox did a clever move to define the partial
likelihood, and we shall see that we can mimic likelihood methods when
we study the partial likelihood.
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Partial likelihood

Consider the intensity function

�i (t) = Zi (t)↵0(t)e
�T x i (t).

Let N• =
P

n

l=1 Nl(t), and �•(t) =
P

n

l=1 �l(t) =
P

n

l=1 Zl(t)↵0(t)e�
T x l (t).

Note that �i (t) = �•(t)⇡(i | t) where

⇡(i | t) = �i (t)

�•
=

Zi (t)���↵0(t)e�
T x i (t)

P
n

l=1 Zl(t)���↵0(t)e�
T x l (t)

.

Definition (Partial likelihood)

Consider the event times T1 < T2 < . . . , and let ij be the index of the individual
who experiences an event at Tj . The partial likelihood is

L(�) =
Y

Tj

⇡(ij | Tj) =
Y

Tj

Zij
(Tj)e

�T x ij
(Tj )

P
n

l=1 Zl(Tj)e�
T x l (Tj )

.

Interpretation: ⇡(i | t) is the probability of observing an event for individual i at
time t, given the history until time t and that there is an event at time t.
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Partial likelihood in a more familiar way

Let Rj = {l : Zl(Tj) = 1}, which is the risk set at Tj . Then, we can
re-write the partial likelihood as something that looks familiar

L(�) =
Y

Tj

e
�T x ij

(Tj )

P
l2Rj

e�
T x l (Tj )

.

Definition (Maximum partial likelihood estimator)

The maximum partial likelihood estimator �̂ is the value of � that
maximizes the partial likelihood.
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Intuition on the partial likelihood

Because the non-parameteric form of the baseline hazard ↵0(t), we pose
no model assumptions on the time between the events T1,T2 . . . . Thus,
the partial likelihood is a function only of the ranks of the events. Indeed,
the partial likelihood would be unchanged by any monotone transformation
of the time scale.
Furthermore, the censoring times are only present in the risk sets. Under
the independent censoring assumption, this is reasonable, because knowing
when an individual is censored does not provide information about the
hazard function.
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Results on partial likelihood estimation

Theorem (Properties of the partial likelihood)

In large samples, �̂ is approximately normally distributed with E(�̂) = �0

and variance I(�0)
�1

, where I(�) = � �2

��h,��j
logL(�) is the observed (and

expected) partial information matrix.

I(�0) is consistently estimated by I(�̂).
It took 9 years from the Cox model was proposed until the large sample properties
of the Cox model were formally shown.
Later, it was realized that a very convenient way of proving this theorem is to use
counting processes and martingales. I am not giving a rigorous proof here, but I
am happy to direct you to sources if you want more detail: The idea is to show
and use that the score U(�) = �log(L(�))

�� is a martingale.22

The point is that – with the theory you have learned so far – you would be able to
derive it, but the derivation is more tedious compared to what we have done until
now.

22Per K Andersen et al. Statistical models based on counting processes. Springer
Science & Business Media, 2012.
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We can conduct tests of � = �0 in the usual way

Likelihood ratio statistic: �2
LR

= 2{log L(�̂)� log L(�0)}
Wald test statistic: �2

W
= (�̂ � �0)T I (�̂)(�̂ � �0).

Score test statistic: �2
SC

= U(�0)T I (�0)�1
U(�0),where

U(�) = �
�� log L(�). We shall see that this one is related to log rank

test.

These statistics are �2 distributed with p degrees of freedom.
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Example: Survival among Norwegian smokers and
non-smokers

From Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event

history analysis: a process point of view. Springer Science & Business
Media, 2008
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We are interested in the absolute risk (survival)

To estimate expected survival from the Cox model, we also need an
estimate of the baseline (cumulative) hazard H0(t) =

R
t

0 ↵0(u)du.
Consider again the aggregated survival process N• =

P
n

l=i
Ni (t), which

has intensity

�•(t) = ↵0(t)
⇣ nX

l=1

Zl(t)e
�T x l (t)

⌘
.

Suppose we knew �, then �•(t) would satisfy the multiplicative intensity
model, which would mean that we could simply estimate Ĥ0(t) by the
Nelson-Aalen-like estimator

Ĥ0(t;�) =

Z
t

0

dN•(u)P
n

l=1 Zl(u)e�
T x l (u)

.

This motivates the Breslow estimator, which is given on the next slide
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Breslow estimator

Definition (Breslow estimator)

Ĥ0(t) =

Z
t

0

dN•(u)
P

n

l=1 Zl(u)e�̂
T x l (u)

=
X

Tjt

1
P

l2Rj
e�̂

T x l (Tj )
.

Thus, when the covariates are fixed, we get an estimator of the conditional (on
x0) hazard

Ĥ(t | x0) = Ĥ0(t)e
�̂

T x0 ,

and then we use the product integral representation

S(t | x0) = R
ut

{1� dH(u | x0)}

to motivate an estimator of the conditional survival, Ŝ(t | x0),

Ŝ(t | x0) = R
ut

{1� dĤ(u | x0)} =
Y

Tjt

{1��Ĥ(Tj | x0)},

which is consistent and asymptotically normal.
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Some comments on hazard modelling

In my opinion, there is an unfortunate habit of reporting hazard ratios
in the literature.

Reporting parameters on the survival scale is, broadly speaking, more
desirable.
Yet, hazard models, including the Cox model, are useful when we
estimate these other parameters.

In the next slides, I will give some arguments why.
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Example: Survival among Norwegian never-smokers and
heavy smokers

Arguably, the curves provide more information than the numbers in the
previous table.
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Hazards are often not proportional, but hazard ratios are
too often reported anyway

Statin therapy
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Cancer screening

Clearly not proprtional hazards....
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Table from the article on cancer screening
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Graphical model checking (this is just visual inspection...)

We consider a Cox model with fixed covariates, which is most used in
practice. Then

↵(t | x) = ↵0(t)e
�T x .

Thus,

� log(S(t | x)) =
Z

t

0
↵(s | x)ds =

Z
t

0
↵0(s)e

�T x
ds.

The model implies linearity in the following sense,

log{� log(S(t | x))} = log{
Z

t

0
↵(s | x)ds} = log{

Z
t

0
↵0(s)ds}+ �T

x .

Thus, log{� log(Ŝ(t | x1))} and log{� log(Ŝ(t | x2))} for any x1, x2

should be parallel in a plot with time on the horizontal axis. For a single
binary covariate, we could e.g. look at the di↵erence between two
Kaplan-Meier estimators.
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Example COVID in real-life

The authors did not assume proportional hazard here.
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Estrogen trial continued: Does the e↵ect change over
time?

Figure 7: Caption
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So far I have talked a lot about experiments or randomized
trials

Reminder:

Definition (Average causal e↵ect)

A contrast of expected counterfactual outcomes in the same population of
individuals under two di↵erent treatments (exposures).

In biostatistics, we are very often interested in causal e↵ects.

In RCTs, adjustment of covariates is not necessary, in principle.
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Simple example continued

In a simple randomized experiment (RCT),
T

a ?? A for a = 0, 1, and T = AT
a=1 + (1� A)T a=0.

Suppose that the Cox model is correctly specified as

↵(t | a) = ↵0(t)e
�T

a.

This implies that P(T > t | A = 1) = P(T > t | A = 0)exp(�), and thus

exp(�) =
log{P(T > t | A = 1)}
log{P(T > t | A = 0)}

=
log{P(T a=1 > t)}
log{P(T a=1 > t)} .

This is not a simple interpretation. Not clear why we should communicate e↵ects
on the log scale.
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Example continues

Alternatively give an interpretation on the hazard scale,

exp(�) =
limh!0 P(t + h > T � t | T � t,A = 1)

limh!0 P(t + h > T � t | T � t,A = 0)

=
limh!0 P(t + h > T

a=1 � t | T a=1 � t)

limh!0 P(t + h > T a=0 � t | T a=0 � t)
.

The right hand shows side that the hazard functions with and without
intervention for two separate groups of individuals; those who survive time
t with treatment (T a=1) and those who survive time t without treatment
(T a=0).
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Problems with hazard ratios?

Even in a perfect RCT, at any t > 0 the hazard ratio compares two
groups of patients with potentially di↵erent characteristics: those who
would survive to time t if assigned to A = 1 are not the necessarily
the same as those who would survive to time t if assigned to A = 0.

Hazards ratios are rate ratios, ↵1(t)
↵2(t)

, not risk ratios, 1�S1(t)
1�S2(t)

.
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Simple example from randomized experiment

Simple reminder about causal inference.

Consider a simple binary covariate A that is randomly assigned.

Now we define some simple counterfactual survival times T a=1 and T
a=0.

T
a 2 [0,1).

The outcome variable that would have been observed under the treatment
value a.

Often we will specifically instantiate a, i.e. set a to a value:

T
a=0 2 [0,1).

The outcome variable that would have been observed under the treatment
value a = 0.

Y
a=1 2 [0,1).

The outcome variable that would have been observed under the treatment
value a = 1.

We suppose that: T = AT
a=1 + (1� A)T a=0 (Consistency).
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Illustrative examples

Mats J Stensrud and Miguel A Hernán. “Why test for proportional
hazards?” In: Jama 323.14 (2020), pp. 1401–1402
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Random censoring changes the hazard ratio

Random censoring changes the magnitude of the hazard ratio from the
Cox model (but not the magnitude of the Kaplan-Meier estimator). Be
aware that the hazard ratios here are derived from mis-specified (the
parameterization is clearly not correct), whereas the the Kaplan-Meier
estimator is correctly specified.
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Problems with the hazard ratio

Non-collapsible (you will see this in your homework).

Hazards ratios are rate ratios, ↵1(t)
↵2(t)

, not risk ratios, 1�S1(t)
1�S2(t)

.

Does not say anything about the absolute risk, which is often of
interest.

Depends on censoring.
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Collapsibility (heuristically)

A measure of association (such as the risk di↵erence or the risk ratio) is
said to be collapsible if the marginal measure of association is equal to a
weighted average of the stratum-specific measures of association.
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Collapsibility

Definition (Collapsibility of an association parameter at t)

Let g [f (T ,A)](t) be a function that describes the association between T

and A in the joint distribution f (T ,A). We say that g is collapsible on a
covariate V with weights wv (t) ifP

v
{g [f (T ,A|V=v)](t)⇥wv (t)}P

v
wv (t)

= g [f (T ,A)](t).

Definition (Collapsibility of a causal e↵ect at t)

Let h[f (T a=0,T a=1)](t) be a function of T a=0 and T
a=1 in the joint

distribution f (T a=0,T a=1). We say that h is collapsible on a
pre-treatment variable V with weights wv (t) ifP

v
{h[f (Ta=0,Ta=1|V=v)](t)⇥wv (t)}P

v
wv (t)

= h[f (T a=0,T a=1)](t).
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Survival di↵erence

Weights P(V = v) because

X

v

[P(T a=1 > t|V = v)� P(T a=0 > t|V = v)]⇥ P(V = v)

=
X

v

P(T a=1 > t|V = v)⇥ P(V = v)

�
X

v

P(T a=0 > t|V = v)⇥ P(V = v)

= P(T a=1 > t)� P(T a=0 > t).
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Survival ratio

Weights P(V = v | T a=0 > t) because

X

v

P(T a=1 > t | V = v)⇥ P(V = v | T a=0 > t)

P(T a=0 > t | V = v)

=
X

v

P(T a=1 > t | V = v)⇥ P(T a=0 > t | V = v)⇥ P(V = v)

P(T a=0 > t | V = v)⇥ P(T a=0 > t)
(Bayes T)

=
X

v

P(T a=1 > t | V = v)⇥ P(V = v)

P(T a=0 > t)

=

P
v
P(T a=1 > t | V = v)⇥ P(V = v)

P(T a=0 > t)

=
P(T a=1 > t)

P(T a=0 > t)
.
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Counterexample for hazard ratios

Suppose that treatment A 2 {0, 1} is randomly assigned and that Z is a baseline
covariate. Consider an absolutely continuous event time T with conditional
hazards given by

↵(t | A = 0,Z ) = Z↵(t), ↵(t | A = 1,Z ) = rZ↵(t),

where Z 2 [0,1), r > 0, ↵(t) > 0 8t > 0. Remember that the Laplace
transform of Z is defined as

L(c) = E(e�cZ ).

for c 2 C. Thus,
S(t | A = 0) = L(H(t)).

Taking derivatives,

↵(t | A = 0) = �↵(t)
L0(H(t))

L(H(t))
.
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Counterexample continues

Suppose that Z is gamma distributed with mean 1 and variance �, which
has the Laplace transform

L(c) = {1 + �c}
�1
� ,

where c is a complex number. Thus, S(t) = {1 + �H(t)}
�1
� , and

↵(t | A = 0) = ↵(t)
1+�H(t) . An identical argument gives that

↵(t | A = 1) = r↵(t)
1+�rH(t) .

To finish the counterexample, select � = 1 (exponential distribution) and
r > 1. This means that the hazard ratio is r conditional on
Z = z , 8z 2 [0,1]. Then, for all t > 0,

↵(t | A = 1)

↵(t | A = 0)
= r

1 + H(t)

1 + rH(t)
< r .

This counterexample shows that hazard ratios are not collapsible.
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SPRINT study
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SPRINT study

The hazard ratio does give a di↵erent impression of the e↵ect compared to thethe
restricted mean survival (RMST, as defined in a previous slide), which is
estimated as

µ̂t =

Z
t

0
Ŝ(u)du,

and is the gray area between the curves in the previous plot.

Mats J. Stensrud Biostatistics Spring 2024 254 / 419


	Structure of the course
	Prediction vs. causal inference
	Defining a causal effect
	Lecture 2
	Causal graphs
	Intuitive motivation for causal graphs

	DAGs
	More formal consideration of graphs

	Lecture 3
	Time-to-events and survival analysis
	Processes
	Martingales

	Lecture 5
	Counting processes

	Estimation
	Lecture 6
	Lecture 7
	Hypothesis testing
	Lecture 8
	P-values
	Proportional hazard models
	Lecture 9
	End Lecture 10
	Previous course
	Additive hazard models
	Lecture 9
	Adjustment for dependent censoring and introduction of IPW
	Lecture 10
	Lecture 11
	Multistate models and competing events
	Lecture 12
	Lecture 13
	Analysis of counts and recurrent events
	Lecture 14
	Precision medicine and optimal regimes

