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Partial likelihood

From previous statistics courses you have learned about likelihood
methods. You have used these for parametric models. However, because
the Cox Model is semi-parametric, we cannot immediately apply likelihood
methods for estimation. David Cox did a clever move to define the partial
likelihood, and we shall see that we can mimic likelihood methods when

we study the partial likelihood.
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Partial likelihood

Consider the intensity function

Ni(t) = Zi(t)ao(t)e” 1),
Let Ny = 327, Ni(1), and Ao(t) = 373 M(t) = 3574 Zi(t)ao(£)eP 100,
Note that \;j(t) = Ae(t)w(i | t) where

(1) __ Zi(t)oste)e? )

(i | t) = -

Ao XLy Zi(t)aetT)el 0

Definition (Partial likelihood)

Consider the event times T; < T, < ..., and let j; be the index of the individual
who experiences an event at T;. The partial likelihood is

7. (T,)eﬁTij("}')
LB) =G| T) = i .
@617 =1l Zmyerm

Interpretation: (i | t) is the probability of observing an event for individual 7 at
time t, given the history until time t and that there is an event at time t.
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Partial likelihood in a more familiar way

Let R; = {/: Z)(T;) = 1}, which is the risk set at T;. Then, we can
re-write the partial likelihood as something that looks familiar

L) =1]

Tx(T;)"
T; E/eRj el xi(T)

A xi(T)

Definition (Maximum partial likelihood estimator)

The maximum partial likelihood estimator ,@ is the value of 3 that
maximizes the partial likelihood.
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Intuition on the partial likelihood

Because the non-parameteric form of the baseline hazard ap(t), we pose
no model assumptions on the time between the events T1, T».... Thus,
the partial likelihood is a function only of the ranks of the events. Indeed,
the partial likelihood would be unchanged by any monotone transformation
of the time scale.

Furthermore, the censoring times are only present in the risk sets. Under
the independent censoring assumption, this is reasonable, because knowing
when an individual is censored does not provide information about the
hazard function.
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Results on partial likelihood estimation

Theorem (Properties of the partial likelihood)

In large samples, B is approximately normally distributed with E(B)
and variance Z(B,)~*, where Z(3) = logL(3) is the observed (and
expected) partial information matrix.

éﬁh 55

Z(f3) is consistently estimated by Z(/3).

It took 9 years from the Cox model was proposed until the large sample properties
of the Cox model were formally shown.

Later, it was realized that a very convenient way of proving this theorem is to use
counting processes and martingales. | am not giving a rigorous proof here, but |
am happy to direct you to sources if you want more detail: The idea is to show
and use that the score U(3) = %2(’8)) is a martingale.??

The point is that — with the theory you have learned so far — you would be able to
derive it, but the derivation is more tedious compared to what we have done until
now.

2per K Andersen et al. Statistical models based on counting processes. Springer
Science & Business Media, 2012.
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We can conduct tests of 5 = [y in the usual way

o Likelihood ratio statistic: x7p = 2{log L(j) — log L(50)}
o Wald test statistic: x3, = (B —Bo)T1(B)(B - Bo).

o Score test statistic: x2- = U(B0) T 1(80) 1 U(Bo), where

up) = % log L(3). We shall see that this one is related to log rank
test.

These statistics are y? distributed with p degrees of freedom.
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Example: Survival among Norwegian smokers and

non-smokers

Table 4.3 Estimated relative risks (hazard rate ratios) with 95% confidence intervals (c.i.) based
on a Cox regression analysis of the total mortality in three Norwegian counties.

Covariate Hazard ratio 95% c.i.

Sex 0.58 0.48-0.70
Former smoker 1.37 1.05-1.78
1-9 cigarettes per day 2.44 1.83-3.25
10-19 cigarettes per day 245 1.91-3.14
20 or more cigarettes per day 2.96 2.19-4.00

From Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event

history analysis: a process point of view. Springer Science & Business
Media, 2008
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We are interested in the absolute risk (survival)

To estimate expected survival from the Cox model we also need an
estimate of the baseline (cumulative) hazard Hp(t fo ap(u
Consider again the aggregated survival process N =3 ,-( ) Which

has intensity
Ae(t) = ao(t (ZZ’ BTX/(t))

Suppose we knew 3, then A¢(t) would satisfy the multiplicative intensity
model, which would mean that we could simply estimate Hp(t) by the
Nelson-Aalen-like estimator

Lt )
foles) = | S0 Zi(u)el x

This motivates the Breslow estimator, which is given on the next slide
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Breslow estimator

Definition (Breslow estimator)

Fo(t) = /Ot dNe(u) 1

S Zi()eB i) £ 5 B 0T

Thus, when the covariates are fixed, we get an estimator of the conditional (on
Xo) hazard

A(t | x0) = Ao(t)eP ™,

and then we use the product integral representation

S(t | x0) = J{{1 = dH(u | x0)}

u<t

to motivate an estimator of the conditional survival, (¢ | xo),

S(t | xo) = J{{1—dA(u] xo)} = J] {1 - AA(T; | xo)},

u<t T<t

which is consistent and asymptotically normal.
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Some comments on hazard modelling

@ In my opinion, there is an unfortunate habit of reporting hazard ratios
in the literature.
@ Reporting parameters on the survival scale is, broadly speaking, more

desirable.
Yet, hazard models, including the Cox model, are useful when we

estimate these other parameters.

@ In the next slides, | will give some arguments why.
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Example: Survival among Norwegian never-smokers and
heavy smokers
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Fig. 4.3 Estimated survival curves (given survival to 40 years) for some covariate values based on
a Cox regression analysis of the total mortality in three Norwegian counties. Males: drawn lines;
females: dashed lines. Upper lines: never smoked; lower lines: smokes 20 or more cigarettes per
day.

Arguably, the curves provide more information than the numbers in the

previous table.
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Hazards are often not proportional, but hazard ratios are

too often reported anyway
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Cancer screening

| A] Overall colorectal cancer incidence | 8] Overall colorectal cancer mortality
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0.020
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. - Hazard ratio 0.80 (95% C1 0.70-0.92) - L 0,008+
= 00167 g = Hazard ratio 0.73 (5% C10.56-0.94)
2 2 0.006 —
& 0012+ g ,
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“ 0.004 < 0.0024
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Follow-up Time, y Follow-up Time, y
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Screening 20572 20141 19731 19306 18808 18208 5285 Screening 20572 20204 19816 19411 18945 18448 5656
Control ~ 78220 76648 75059 734l5 71598 69508 17277 Control ~ 78220 76777 75272 73722 72044 70127 17517
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Follow-up Time, y Follow-up Time, y
No. at risk No. at risk
Screening 20572 20141 19731 19306 18808 18208 5285 Screening 20572 20204 19816 19411 18945 13448 5656
Control 78220 76648 75059 73415 71598 69508 17277 Control 78220 76777 75272 73722 72044 70127 17517

Clearly not proprtional hazards....
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Table from the article on cancer screening

Table 3. Colorectal Cancer

Group
Sceening Control
Cases/100 000 Cases/ 100 000
No.  PersonYeas  No. Person-Years HR (95% C1) Palue

Colorectal Cancer Incdence®
Overall 23 126 1086 1410 080(0.70-0.92) 001
Location

Distal 137 609 &1 801 076(063-092) 004

Proxmal 12 98 a4 555 050(0.73-1.10) 31
Sex

Men 128 1156 58 1576 073 (060-089) 002

Women 125 1096 500 1255 087 (0.72-1.06) 18
Age group,y

5054 ) 572 315 843 068 (0.49-0.94) 2

5564 13 1406 m 1696 083 (0.71-0.96) 0
Screening modality

Flexiblesigmoidoscopy 14 1019 1086 1410 072(059-087) 001

Flxiblesigmoidoscopy + FOBT 139 1233 1086 1410 088 (0.74-1.05) 15
Colorectal Cancer Mortality®
Ovenal n 314 330 431 073 (056-0.94) 2
Location

Distal 39 172 168 218 079(055-1.11) 18

Proxmal 30 134 139 183 073 (0.49-1.09) 12
Sex

Men 2 286 182 491 058 (0.40-0.85) 005

Women 39 382 148 374 091 (0.64-1.30) &2
Agegroup,y

5054 12 171 o7 22 074 (0.40-1.35) 2

5564 59 387 23 531 073 (055-0.97) 03
Screening modality

Flexible sigmoldoscopy a 364 330 431 084(061-117) 30

Flexible sigmoidoscopy + FOBT 30 25 330 31 062(0.42:0.90) o
All-cause mortality 2183 969.0 762 9946 097 (0.93-1.02) 2
Abbrevations: FOBT. fecaloccult blood test; R, hazard ati. o dforthe
*Rerson years of observation: orthe screening group. 221 429; andforthe control group, 832 003,

control group, 828 207.
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Graphical model checking (this is just visual inspection...)

We consider a Cox model with fixed covariates, which is most used in
practice. Then

aft | x) = ag(t)e’ ™.
Thus, . .
~log(S(t | x)) = /O ofs | x)ds = / ao(s)e’ % ds.

0
The model implies linearity in the following sense,

log{— log(S(¢ | x))} = log{ /0 a(s | x)ds} = log /O " ao(s)ds} + AT x.

Thus, log{—log(5(t | x1))} and log{—log(5(t | x2))} for any x1, x»
should be parallel in a plot with time on the horizontal axis. For a single
binary covariate, we could e.g. look at the difference between two
Kaplan-Meier estimators.
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Example COVID in real-life

- Unvaccinsted = Vaccinated
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The authors did not assume proportional hazard here.
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Estrogen trial continued: Does the effect change over

time?

Table 2. Estrogen plus Progestin and the Risk of CHD, According to Year
of Follow-up.*

Year of Hazard Ratio for CHD
Follow-up CHD (95% CI)

Estrogen-
plus-

Progestin  Placebo
Group Group

no. of cases (annualized percentage)

1 42(0.50) 23 (0.29) 1.81 (1.09-3.01)
2 38 (0.45) 28 (0.35) 1.34 (0.82-2.13)
3 19(0.23) 15 (0.19) 1.27 (0.64-2.50)
4 32(0.39) 25 (0.32) 1.25 (0.74-2.12)
5 29 (0.41) 19(0.28) 1.45 (0.81-2.59)

=6 28 (0.37)  37(0.56) 0.70 (0.42-1.14)

* CHD includes acute myocardial infarction (MI) necessitating hospitalization,
silent myocardial infarction as determined by serial electrocardiography, and
death due to CHD. There were nine silent myocardial infarctions (four in the
estrogen-plus-progestin group and five in the placebo group). Hazard ratios
are stratified according to age, presence or absence of a previous coronary
event, and randomly assigned diet-modification group and are adjusted for
previous coronary-artery bypass grafting or percutaneous transluminal coro-
nary angioplasty. The z score for trend was —2.36 (P=0.02); the test for trend
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So far | have talked a lot about experiments or randomized

trials

Reminder:

Definition (Average causal effect)

A contrast of expected counterfactual outcomes in the same population of
individuals under two different treatments (exposures).

@ In biostatistics, we are very often interested in causal effects.

@ In RCTs, adjustment of covariates is not necessary, in principle.
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Simple example continued

In a simple randomized experiment (RCT),
T2l Afora=0,1,and T = AT?71 + (1 - A)T==0.
Suppose that the Cox model is correctly specified as

a(t | a) = ao(t)e? 2.
This implies that P(T > t|A=1) = P(T > t | A= 0)>?), and thus
_log{P(T >t|A=1)}
XP(8) = g (P(T > £ [A=0)}

_ log{P( T > 1))
~log{P(Ta=1 > t)}’

This is not a simple interpretation. Not clear why we should communicate effects
on the log scale.
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Example continues

Alternatively give an interpretation on the hazard scale,

t+h>T>t|T>t,A=1)
t+h>T>t|T>t,A=0)
t+h>T=L>¢| T= > 0t)
t+h>Ta=0>¢t| Ta=0>1¢)

|imhﬁo P

exp(f) =

N |imhﬁo P

|imhﬁo P

—_— |~

" limpso P

The right hand shows side that the hazard functions with and without
intervention for two separate groups of individuals; those who survive time

t with treatment (T72=1!) and those who survive time t without treatment
(T279).
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Problems with hazard ratios?

@ Even in a perfect RCT, at any t > 0 the hazard ratio compares two
groups of patients with potentially different characteristics: those who
would survive to time t if assigned to A =1 are not the necessarily

the same as those who would survive to time t if assigned to A = 0.
@ Hazards ratios are rate ratios, O‘l(t), not risk ratios, 1_Sl(t).
ag(t) 1—52(t)
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Simple example from randomized experiment

Simple reminder about causal inference.
@ Consider a simple binary covariate A that is randomly assigned.

@ Now we define some simple counterfactual survival times 72=1 and T2=°.

@ T2 ¢€[0,).
The outcome variable that would have been observed under the treatment
value a.

@ Often we will specifically instantiate a, i.e. set a to a value:

T2=% € [0, c0).

The outcome variable that would have been observed under the treatment
value a = 0.

Ya=1 € [0, 0).

The outcome variable that would have been observed under the treatment
value a = 1.

We suppose that: T = AT?=1 + (1 — A)T2=° (Consistency).
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lllustrative examples

Survival Hazard

Treatment Treatment

Control ~ ====e=- Control

Scenario 1 Scenario 2 Scenario 3
100 450 100 450 100 450
— ——— ] =

80 375 ¢ 80 375 - 80 == 375 o
® g o= _ | g o= g
= 60 300 & = 607 3.00 2 = 60 300 &
N & 2 s 2 a
2404 aeemeem 225 X 2 225 X 24 225 X
C e g & g @ - g
20 150 * 20+ - o 1.50 = 20 150 &

.75 T 75 .75

1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time Time Time

Mats J Stensrud and Miguel A Herndn. “Why test for proportional
hazards?” In: Jama 323.14 (2020), pp. 1401-1402
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Random censoring changes the hazard ratio

Scenario  Censoring Hazard ratio (95% Cl), Cox 3-year survival difference, % (95% Cl),
proportional hazards model Kaplan-Meier estimator

1 No 0.69 (0.66 to 0.72) 3.2(2.6t03.8)
Yes 0.71(0.67 to 0.74) 3.1(2.5t03.8)

2 No 0.51 (0.48 to 0.54) 3.6(3.1t04.1)
Yes 0.62 (0.58 to 0.66) 3.6(3.0t0 4.1)

3 No 1.27 (1.22 to 1.32) —5.2 (5.8 to —4.5)
Yes 1.34 (1.28 to 1.40) —5.2 (5.9 to —4.5)

Random censoring changes the magnitude of the hazard ratio from the
Cox model (but not the magnitude of the Kaplan-Meier estimator). Be
aware that the hazard ratios here are derived from mis-specified (the
parameterization is clearly not correct), whereas the the Kaplan-Meier
estimator is correctly specified.
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Problems with the hazard ratio

Non-collapsible (you will see this in your homework).

Oq(t) 1—51(t)
az(t)' ! 1752(1‘)'

Does not say anything about the absolute risk, which is often of
interest.

not risk ratios

Hazards ratios are rate ratios,

@ Depends on censoring.
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Collapsibility (heuristically)

A measure of association (such as the risk difference or the risk ratio) is
said to be collapsible if the marginal measure of association is equal to a
weighted average of the stratum-specific measures of association.
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Collapsibility

Definition (Collapsibility of an association parameter at t)

Let g[f(T,A)](t) be a function that describes the association between T
and A in the joint distribution (T, A). We say that g is collapsible on a

covariate V' with weights w, (t) if
2, slf(TAV=v)](t)xw (t)} _ glf (T, A)(t).

v WV(t)

Definition (Collapsibility of a causal effect at t)
Let h[f(T2=°, T2=1)](t) be a function of T2=0 and T2~ in the joint
distribution f( T2, T2=1). We say that h is collapsible on a

pre-treatment variable V' with weights w, (t) if
2, (hIF(To=0, T V=)l xw (1)) h[F(T2=0, T2=1)](¢).

v WV(t)
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Survival difference

Weights P(V = v) because
D IP(TE >tV =v) = P(T?0 > t|]V = v)| x P(V =)
v: D OP(T= >tV =v) x P(V =v)
—VZ P(T*=0 > t|V =v) x P(V =v)

=P(T= > 1) = P(T*7% > 1)
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Survival ratio

Weights P(V = v | T?=9 > t) because

ZP(T3=1>t|V:v)><P(V:v\ 7270 > t)

P(Ta=0>t|V =v)
7ZP(T5’:1>t|V:v)xP(Ta:0>t|V:v)xP(V:v)
T2 P(T=0>t|V =v)x P(T*=0 > t)
_ZP(Ta:1>t|V:v)><P(V:v)

4 P(T>=0>1t)

Y P(T=E >t | V=v) x P(V =V)
- P(T*=0 > t)
P(T*=1 > ¢)

P(Ta=0 > t)’

v

(Bayes T)
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Counterexample for hazard ratios

Suppose that treatment A € {0,1} is randomly assigned and that Z is a baseline
covariate. Consider an absolutely continuous event time T with conditional
hazards given by

a(t|A=0,2)=Za(t), a(t|A=1,2)=rZa(t),

where Z € [0,00), r > 0, at) > 0 Vt > 0. Remember that the Laplace
transform of Z is defined as

L(c) = E(efcz).
for c € C. Thus,
S(t| A=0)= L(H(t)).
Taking derivatives,
L(H(t))

a(t | A=0) = —a(t) Z(H(D)
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Counterexample continues

Suppose that Z is gamma distributed with mean 1 and variance 4, which
has the Laplace transform

L(c)={1+dc}7,

where ¢ is a complex number. Thus, S(t) = {1+ §H(t)} 7 , and

a(t| A=0)= 1+5(H)(t) An identical argument gives that
oft | A=1) = 5.

To finish the counterexample, select 6 = 1 (exponential distribution) and
r > 1. This means that the hazard ratio is r conditional on
Z =z, Vz €]0,00]. Then, for all t >0,

a(t|A=1) 1+ H(t) -
a(t|A=0) "1rrH@) S "

This counterexample shows that hazard ratios are not collapsible.
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SPRINT study
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SPRINT study

SPRINT
Measure Value Comments
Hazard Ratio (HR) 0.75 (0.64, 0.89) The clinical relevance of the
treatment effect is hard to
evaluate from the hazard
ratio alone.
RMST difference 0.08 (-1.3,1.1) During the first year of follow-
1 year of follow up up, there is no significant
difference in the outcome
between intensive therapy
and standard therapy.
RMST difference 13.2 (3.7, 22.6) During the initial 4 years of
4 year of follow up follow-up, intensive
treatment significantly delays
the time to the outcome: The
intensive treatment group are
free of major adverse
coronary event 13.2 days
longer.

The hazard ratio does give a different impression of the effect compared to thethe
restricted mean survival (RMST, as defined in a previous slide), which is
estimated as

t
ﬂt:/ S(u)du,
0

and is the gray area between the curves in the previous plot.
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